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 Soil microorganisms dominate terrestrial biogeochemical cycles; however, we know very 

little about their spatial distribution and how changes in the distributions of specifi c groups 

of microbes translate into landscape and global patterns of biogeochemical processes. In this 

paper, we use a nested sampling scheme at scales ranging from 2 to 2,000   m to show that 

bacteria have signifi cant spatial autocorrelation in community composition up to a distance 

of 240   m, and that this pattern is driven by changes in the relative abundance of specifi c 

bacterial clades across the landscape. Analysis of clade habitat distribution models and spatial 

co-correlation maps identifi ed soil pH, plant abundance and snow depth as major variables 

structuring bacterial communities across this landscape, and revealed an unexpected and 

important oligotrophic niche for the Rhodospirillales in soil. Furthermore, our global analysis of 

high-elevation soils from the Andes, Rockies, Himalayas and Alaskan range shows that habitat 

distribution models for bacteria have a strong predictive power across the entire globe.         
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 D
espite the known importance of microorganisms to the main-
tenance of the Earth ’ s biogeochemical cycles 1,2 , the relation-
ship between the ecological niche of microbial groups and 

the culture-independent identifi cation of their presence in the envi-
ronment is poorly understood 3 – 5 . Th is is because of lack of resolu-
tion in data collected using traditional methods, which obscures the 
identifi cation of potentially important groups across a landscape 3 . 
However, Ettema and Wardle 3  point out that, given enough data, 
 ‘ spatial variability is the key, rather than the obstacle, to understand-
ing the structure and function of soil biodiversity ’ . Previous stud-
ies have shown that there are spatial patterns to microorganisms 6 – 10  
and that some coarse-scale taxonomic groups (at the phylum or divi-
sion level) show strong correlation with environmental parameters; 
for example, Acidobacteria are negatively correlated with soil 
pH, whereas Proteobacteria are positively correlated with pH 11,12 . 
However, groups such as the Acidobacteria and Proteobacteria are 
extremely large and functionally diverse; for example, Proteobacteria 
encompass almost all known microbial physiologies ranging from 
phototrophs to heterotrophs to chemoautotrophs, and recent stud-
ies indicate that the Acidobacteria may be equally metabolically 
diverse 13 . Th us, we gain very little information about the biogeo-
chemistry of a specifi c system or of the global biosphere by knowing 
the spatial distribution of such large taxonomic groups. Similarly, 
we still have only a rudimentary understanding of the local spatial 
scale at which soil microbes and soil biogeochemical parameters are 
distributed. Furthermore, matching the relative abundance patterns 
of specifi c microbial taxa and biogeochemistry at both local and 
global scales has remained an elusive task. 

 Our study makes use of recent advances in high-throughput 
sequencing, bioinformatics and biogeochemical methods 14 – 19  to map 
the co-occurrence of microbial groups with biogeochemical soil 
properties across a highly heterogeneous, high-elevation landscape 
near the continental divide in the Rocky Mountains of Colorado, 
USA 20 – 22 . On the basis of our previous study of the spatial autocorre-
lation of soil biogeochemical properties 22 , we collected 160 soil sam-
ples in a nested sampling scheme. Th is sampling scheme allowed 
us to determine spatial variation in microbial diversity (a random 
subset of 85 samples was pyrosequenced for the 16S gene) and its 
relationship to 21 soil biogeochemical properties at scales from 2 
to 2,000   m in Colorado. Th ese analyses were essential for obtaining 
spatially explicit, landscape habitat distributions (models based on 
co-variation of relative abundance with biogeochemistry) for bac-
terial community members, which were tested at a global scale by 
sampling similar soils in the Colorado Rockies, Himalayas, Andes 
and Alaskan range (Sanger clone libraries of the 16S gene). 

 In this study, we show that bacterial communities have signi-
ficant spatial autocorrelation at distances up to 240   m; however, 
beyond that distance, community composition does not display 
significant spatial autocorrelation. In addition, the dominant 
bacterial clades from the landscape-scale survey display strong 
co-variation with biogeochemical parameters, such that their 
relative abundances across the globe are predictable using habitat 
distribution models.  

 Results  
  Landscape patterns in bacterial community relatedness   .   Th e 
fi rst step in assessing habitat distributions for bacteria was to 
determine whether there was a signifi cant spatial pattern to their 
distribution across the landscape (see  Fig. 1  for sampling design). 
We used Unifrac phylogenetic analysis 18,19  to show that there was 
a signifi cant change in community relatedness with increasing 
distance between any two samples across the landscape ( n     =    85, 
 P     =    0.001, Mantel test) up to a maximum autocorrelation distance 
of 240   m ( Fig. 2 ). However, the change in community relatedness 
up to this scale was somewhat small (change in UniFrac distance 
over 240   m    =    0.03), perhaps indicating that only a subset of the total 

bacterial community is changing across the landscape. In contrast, 
beyond 240   m, there is a random scatter of data around the plateau 
value that is equal to the average community relatedness among all 

    Figure 1    |         Landscape sampling scheme. Satellite image of the sampling 

area in Green Lakes Valley, Colorado (40 ° 3 ′ 24 ″ N 105 ° 37 ′ 30 ″ W). Black 

dots indicate sampling locations and red dots indicate the samples that 

were sequenced for bacterial community composition. The distance 

between the farthest two samples was 2   km.  

   Figure 2    |         Community-level spatial autocorrelation semivariogram. A 

semivariogram plot of the decay in community similarity (as measured by 

the UniFrac community dissimilarity metric on the  y  axis) with increasing 

distance between samples. A UniFrac value of 1 indicates no shared 

community members between two samples and a value of 0 indicates 

100 %  shared community members. The solid line is the variogram model 

fi t, which tracks the predictable change in shared community membership 

with distance. The vertical dashed line is the distance of spatial 

autocorrelation (range), which is the maximum distance, according to the 

model, at which similarity in community composition between samples is 

correlated (in this case, 240   m). The horizontal dashed line represents the 

 ‘ nugget, ’  which is the proportion of the change in community composition 

not explained by the spatial model. The inset demonstrates that, past the 

autocorrelation distance, there is no predictable change in community 

composition with distance.  
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samples (see inset to  Fig. 2 ); thus, at distances greater than 240   m, 
it is just as likely to fi nd a closely related community as it is to fi nd a 
distantly related community. 

 To determine which, if any, subset of the bacterial community 
was changing across the landscape, we examined the spatial auto-
correlation in genetic relatedness and relative abundance for major 
bacterial clades containing more than 100 sequences across all 
sampling sites (30 clades in all). Genetic relatedness and / or relative 
abundance of clades may account for community biogeographical 
patterns 5 ; however, across the high-alpine landscape, only the rela-
tive abundance of specifi c clades contributed to the community spa-
tial pattern across the landscape (six clades,  P   ≤  0.002, Moran ’ s I for 
relative abundance,  Supplementary Data ). Th ese analyses show that 
high-alpine bacterial clades have distinct landscape-scale patterns 
in distribution, suggesting that bacterial clade relative abundance 
may be structured by patterns in biogeochemical parameters at the 
landscape scale.   

  Habitat distribution modelling for bacterial clades   .   Given the spa-
tial patterning of microbial clades, we next determined which, if any, 
biogeochemical parameters underlie these patterns 4 . We used habi-
tat distribution models 23,24  to analyse the habitat distributions of the 
30 clades, in order to identify the major landscape-scale structuring 
factors. Th e models characterize the relationship between the relative 
abundance of bacterial clades and an extensive set of biogeochemi-
cal parameters across the landscape (21 diff erent factors, includ-
ing soil pH, plant cover, average annual snow depth, soil texture and 
extracellular enzyme activities, see  Supplementary Data ). Th ese inde-
pendent analyses identifi ed some of the same clades that spatial auto-
correlation analyses did, including the Rhodospirillales, Rhizobiales, 
Acido bacteria G4 and Saprospirales, which were identifi ed as having 
the highest levels of correlation with soil biogeochemical parameters 
( Supplementary Data ). Th is approach yielded strong model fi ts with  r  2  
values between 0.53 and 0.62 ( Table 1 ), equivalent to the best  r  2  values 
for models of plant and animal abundances at the landscape scale 23,24 . 

 To visualize how these clades are related to soil biogeochemi-
cal parameters, we mapped the habitat distributions for each of 
the three most abundant clades across the landscape ( Fig. 3 ); each 
mapped model describes the relative abundance of a clade on 
the basis of its response to the biogeochemical parameters at any 
one location in combination with a Kriged 25  spatial component 
that is a proxy for the infl uence of unmeasured biogeochemical 
parameters. In addition, out of the 21 biogeochemical parameters 
measured, we identifi ed three parameters as the primary factors 
shaping microbial distribution in this environment ( Table 2 ). Th ese 
parameters were soil pH, snow depth and forb abundance (forbs 
are broadleaved fl owering plants, not grasses). Snow depth and 
plant abundance are known drivers of landscape structure in this 

extreme alpine environment 20 – 22 , and interact in that snow depth 
can control plant abundance in this system. In contrast, soil pH 
did not have a large interaction with other model variables, which 
suggests that pH measures a separate landscape process such 
as the composition of bedrock weathering products 26 . In addi-
tion, pH was the only model variable that showed a strong eff ect 
on the distribution of all four clades, which is in agreement with 
previous studies at continental scales 11,12,14 , and suggests that soil 
pH is an important driver of microbial community composition 
at both small and large scales. Although spatial studies have been 
conducted for microorganisms at many scales 6 – 10 , these models 

  Figure 3    |         Major clade habitat distribution maps. Maps of the sequence 

relative abundance as predicted by habitat distribution models for the three 

most abundant clades with a strong correlation with environmental variables. 

Each relative abundance map is depicted with four dimensions, the length and 

width representing geographical space, the vertical dimension representing 

forb abundance for the upper two maps and soil pH for the bottom map (hash 

mark scale on the right) and colour representing the relative abundance of 

each of the clades (scale on left, red    =    high; blue    =    low). The clades are ( a ) 

Rhizobiales, ( b ) Rhodospirillales and ( c ) Acidobacteria G4. The clade with 

the fourth highest relative abundance, the Saprospirales, had a distribution 

very similar to that of the Acidobacteria G4 and is not shown. The maps 

were created by cokriging 25 , an interpolation method that uses the 85 relative 

abundance measurements in combination with the environmental predictors 

from our model at all 160 sample locations to create a continuous map of 

relative abundance in the sampling area. The bottom topographic map shows 

the two-dimensional extent of the landscape.  

  Table 1      |    Habitat-model spatial and biogeochemical components. 

    AIC variables    Explained by spatial 
model ( r    2   )  

  Explained by predictor 
variables ( r    2   )  

  Explained by 
OLS ( r    2   )  

  Total explained by 
(predictor     +     space,  r    2   )  

  Residual 
autocorrelation (m)  

    Acidobacteria G4  
        β -Glucosidase, soil water, snow 

depth, MBN, pH 
 0.365  0.409  0.44  0.573  350 

    Rhizobiales  
       Soil water, forb abundance, 

snow depth, pH, WHC 
 0.352  0.339  0.365  0.533  250 

    Rhodospirillales  
       Soil water, snow depth, DOC, 

sand, forb abundance, pH 
 0.148  0.557  0.56  0.591  110 

    Saprospirales  
        β -Glucosidase, soil water, DOC, 

pH, forb abundance,  snow depth  
 0.29  0.587  0.593  0.621  250 

     AIC, Akaike Information Criteria; DOC, dissolved organic carbon; MBN, microbial biomass nitrogen; OLS, ordinary least squares; WHC, water holding capacity.   
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represent the fi rst successful description of predictive habitat 
distributions for bacteria. 

 Th e predicted ecological niches based on our habitat distribu-
tion models confi rm what is already known about some groups and 
suggest an unexpected dominance and new niche for another large 
group of bacteria. For example, the Rhizobiales are known plant root 
symbionts 27 ; hence it was not a surprise that their relative abundance 
was most highly correlated with plant abundance across the land-
scape. In contrast, our results pointed to the unexpected importance 
of the Rhodospirillales (our most abundant clade) across this alpine 
landscape. Th ese organisms are mostly found in aquatic habitats 
where many of them fi ll a phototrophic niche, although they have 
extreme metabolic versatility encompassing photoheterotrophic, 
chemo organotrophic and photoautotrophic lifestyles 28 . Although pH 
was the best predictor of the relative abundance of Rhodospirillales, 
the mechanism of this control for this group and for broader groups 
of microorganisms remains unknown 11,12 . However, although we 
do not yet know the Rhodospirillales ’  function in high-alpine soils, 
their negative correlation with plant abundance (the next strongest 
correlate) may indicate that they are outcompeted for light by plants 
in the alpine landscape and may be previously undocumented photo-
trophs in this environment. Rhodospirillales negatively correlated 
with soil nutrients and total microbial biomass as well ( Supplementary 
Data ), which, in combination with their metabolic versatility, suggests 
that these alpine microorganisms are well adapted to extremely oligo-
trophic areas. Regardless of their exact function, this is the fi rst report 
of the widespread occurrence of Rhodospirillales in soil and we would 
not have predicted their importance across large expanses of the alpine 
landscape without detailed models of their habitat distribution.   

  Global-scale predictive power of habitat distribution models   . 
  To estimate global-scale applicability of bacterial habitat mod-
els to geographically separate high-elevation environments, we 
constructed Sanger clone libraries from six samples in each of 
four of the highest mountain ranges on Earth. These locations 
represent tests of our models against the extreme environmental 
limits of high-alpine systems (newly deglaciated soils near Mt 
Denali, late-melting snowbanks near the continental divide in 
the Colorado Rockies and alpine deserts in the high Andes and 
Himalayas;  Supplementary Table S1 ). Taken together, the four 
clades identified in our pyrosequencing study made up a signifi-
cant portion of the Sanger library microbial community in most of 
our sites, representing 26 %  of all bacteria in the Colorado Rockies, 
Himalayas and Alaskan range, but only 8 %  in the most extreme 
site, the high Andes. 

 Our habitat distribution models correctly predicted the relative 
abundance of the four major clades from our pyrosequencing study 
across the entire global data set ( Fig. 4 ). Th e models in which the bio-
geochemical variables closely matched the Colorado Rockies environ-
ment had the highest predictive power; however, the models did not fi t 
as well in areas with extreme diff erences in environment. In our most 
extreme global location, that is, the volcanic soils of the high Andes 
with almost no snowpack and no plant cover, the Rhodospirillales 

   Figure 4    |         Major clade global-scale abundances and model predictions. 
The relative abundance of Colorado ’ s four major clades across high-alpine 

soils at a global scale (Acido, Acidobacteria G4; Rhizo, Rhizobiales; Rhodo, 

Rhodospirillales; and Sapro, Saprospirales; a, Rocky Mountains; b, Alaska 

Range; c, Himalayas; and d, Andes). Actual relative abundance: open bars; 

predictive habitat model relative abundances: shaded bars; error bars 

represent standard error;  * indicates nonsignifi cant difference between 

actual and predicted ( t -test,  n     =    6,  P     >    0.05). Ordinary Least Squares (OLS) 

predictive habitat models using a restricted parameter set (see model 

parameters,  Table 2 ). Acidobacteria G4 and Saprospirales had signifi cant 

correlation between residuals (predicted relative abundance    −    actual relative 

abundance) and environmental variables, and are error corrected using OLS 

to predict residual error. Sanger relative abundances were rescaled because 

of the previously described biases in Sanger versus pyrosequencing 14,41 .  

    Table 2      |    Landscape and global habitat distribution model coeffi cients. 

      Acidobacteria G4    Rhizobiales    Rhodospirillales    Saprospirales  

    β -Glucosidase  0.251 (0.231)  0 (0)  0 (    −    0.214)  0.326 (0.347) 
   Soil water      −    0.129 (    −    0.014)      −    0.264 (    −    1.145)      −    0.23 (    −    0.251)      −    0.074 (0.569) 
   Forb abundance  0 (    −    0.412)  0.372 (0.383)  0 (0)  0.173 (    −    0.16) 
   Snow depth      −    0.544 (0)      −    0.249 (0)      −    0.295 (0)      −    0.165 (0) 
   WHC  0 (    −    0.067)  0.32 (0)  0 (0)  0 (0.389) 
   MBN      −    0.196 (0)  0 (0.305)      −    0.077 (0)  0 (0) 
   DOC  0 (0)  0 (0)      −    0.255 (    −    0.099)      −    0.122 (    −    0.267) 
   MBC  0 (0)  0 (    −    0.139)  0 (0)  0 (0) 
   SAND  0 (0)  0 (0)  0.413 (0)  0 (0) 
   pH  0.315 (0.325)  0.059 (0.276)      −    0.557 (    −    0.446)  0.274 (0.3) 
   Leucine peptidase  0 (0.944)  0 (0)  0 (0)  0 (0.307) 

    Global scale model predictive power  
      Mean difference (predicted    −    actual)      −    2.4      −    1.15      −    2.7      −    1.13 
       Standard deviation of residuals 

(error-corrected model) 
 4.49 (3.06)  3.11 (NA)  14.47 (NA)  1.23 (0.98) 

     DOC, dissolved organic carbon; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; SAND,  %  sand; WHC, water holding capacity.   
     Landscape-scale habitat models are given as the fi rst number and the revised global-scale models are given in parentheses.   
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were, predictably, the group with the highest relative abundance, 
whereas the other three groups were absent or had very low relative 
abundances. Th is suggests that, although extreme habitats result in 
lower accuracy of habitat modelling for alpine bacteria, these same 
major clades are predictable in their importance globally. Th is conclu-
sion is supported by our recent fi ndings that fungal communities are 
very similar in plant-free soils of the Rocky Mountains, Himalayas 
and Antarctica 29 . Th us, high elevation and high latitude environments 
seem to harbour globally distributed microbial clades and are proving 
to be ideal environments to test hypotheses about the biogeography of 
soil microbial community diversity and function.    

 Discussion 
 Although other studies have shown that (1) spatial patterns exist 
in soil microorganisms 6,7  and (2) steep gradients in soil chemistry 
are correlated with phylum-level changes in microbial community 
composition 20,21 , our study is the fi rst to successfully link spatial 
autocorrelation in microbial communities to the distribution of 
individual clades and to demonstrate that these distributions can be 
modelled with strong predictive power across the landscape and the 
globe. We did this by examining the relationship between narrowly 
defi ned bacterial clades and soil environmental and biogeochemical 
patterns, which aff ords greater power to identify ecological patterns 
than do previous operational taxonomic unit diversity 6,7  or phylum 
level 11,12  studies. By examining narrowly defi ned clades, we were able 
to provide the fi rst environmental-sequencing-based description of 
ecological niches for bacteria and identify unexpectedly important 
bacterial clades such as the Rhodospirillales. In addition, the groups 
that showed the highest level of spatial structuring across the land-
scape have predictable distributions in high-elevation soils across 
the globe, suggesting that these groups are easily dispersed and are 
of signifi cant importance to alpine biogeochemistry and bacterial 
community dynamics. Th ese fi ndings are evidence that soil micro-
organisms are not homogeneously distributed across landscapes but 
rather occur in patches the composition of which is related to the 
landscape distribution of biogeochemical properties. Th is approach 
is uniquely ecosystem focused and greatly expands our ability to 
link changes in community diversity with the relative abundance 
of individual bacterial clades and understand the ecology of soil 
organisms across the landscape and the Earth.   

 Methods  
  Sampling scheme   .   A total of 160 soil samples were collected from a continuous 
landscape on the south side of the Green Lakes Valley Watershed (GLV), CO, USA. 
We sampled a distinct and well-defi ned landscape unit within the GLV that is bound 
on the east by the tundra, on the south by alpine lakes, glaciers and meadows, on the 
west by the continental divide and on the north by steep cliff s. Th ere is a large cliff  face 
in the centre of our landscape, along the base of which exists a narrow 75   m wide cor-
ridor that connects the upper and lower parts of the landscape ( Fig. 1 ). Th e sampled 
landscape is composed of a matrix of block slope, late-melting snow banks overlaying 
unvegetated gravel soils, fellfi elds and small patches of vegetation 20,22,30 . However, even 
in the most developed soils, the soil texture is high in sand content and the total soil 
depth is minimal. Th e valley receives the majority of its precipitation during winter 
months 14  and many snow banks do not completely melt until late July / early August. 
Our sampling was conducted from 4 – 8 September 2007 in order to minimize the 
eff ects of localized variation in soil water because of snowmelt subsidies. 

 Th e main goal of our sampling eff ort was to construct spatially explicit land-
scape models. Such models require a subset of samples to be collected at a small 
enough scale in order to establish a baseline for the spatial autocorrelation 31 . A 
preliminary study of GLV Watershed soils 22  spanning sampling distances from 
10   cm to 1   km was used to determine an optimum sampling interval of 50   m. How-
ever, to generate accurate spatial models, we selected three locations for smaller 
spaced sampling, which was performed in a 5   m grid over 30   m × 30   m plots. At each 
sampling location, a 10   cm diameter section of soil to 4   cm depth in the approxi-
mate centre of the soil patch closest to the predetermined grid point was mixed 
and  ~ 75   g placed in a sterile conical tube. Th e location of each sampling point was 
recorded with a  Garmine eTrex Vista gps unit  ( Garmin International ). Soil samples 
were stored at 4    ° C for a maximum of 1 week while soil-dissolved organic carbon 
and total dissolved nitrogen measurements were taken. Aft erwards, soils were 
stored at     −    20    ° C until processing. Soils for soil texture analysis were collected from 
each location in September 2008.   

  Sequencing and biogeochemical measurements   .   Microbial diversity data for 
the GLV samples were obtained by pyrosequencing 85 randomly selected samples 
(out of 160 total) ( Fig. 1 ) for the 16S gene using the method of Fierer  et al.  32  and 
resulting in 16,894 sequences with an average length of 230 nucleotides. Dis-
solved organic C / N and microbial biomass C / N were determined, and analysis 
of extracellular enzymes  N -aceytalglucosaminase,  β -glucosidase,  α -glucosidase, 
 β -xylase, cellobiosidase, leucine amino-peptidase, organic phosphatase and lignin 
oxidase / peroxidase was performed using the methods of Weintraub  et al.  33  Soil 
pH was measured aft er the addition of 2   ml water to 2   g soil and shaking for 1   h. 
Soil water content and soil water holding capacity were measured gravimetrically. 
Soil texture (clay / sand / silt) was measured by South Dakota Soil Laboratory (South 
Dakota State University, Brookings, SD, USA). Plant diversity and abundance were 
measured by identifying and recording all vascular plants within a 1   m radius of a 
sampling location. Snow depth values at each point were obtained by averaging the 
snowpack depth from the kriging interpolations of snow surveys in the GLV from 
1997 to 2003 ( Niwot LTER database ,  http://culter.colorado.edu/exec/Database/
gis_layer_query.cgi ). Degree of slope was calculated on the basis of a 10   m digital 
elevation model also available from the Niwot LTER website.   

  Phylogenetics and habitat modelling   .   Clades were defi ned by selecting all nodes 
on the full community tree that aggregated at least 100 sequences (12,303 sequences 
were obtained, an average of 145 sequences per sample). Semivariograms, 
correlation matrices and correlation signifi cance tests were performed in R 34  
(version 2.8.1, 22 December 2008,  Th e R Foundation for Statistical Computing  
 http://www.r-project.org/index.html ) with the aid of the spatial statistics add-on 
package geoR. Semivarogram models were fi t in R for a spherical model 25  using a 
Nelder – Mead nonlinear algorithm 35 . Mantel tests for spatial autocorrelation models 36  
were evaluated from 0   m to the modelled distance of autocorrelation for each 
semivariogram in R using the statistics add-on package ade4 using 1,000 iterations. 
Moran ’ s  I -tests for spatial autocorrelation 37  in clade relative abundance were 
conducted in R using in spatial statistics add-on package ape. Clade habitat distribu-
tion models were constructed in the Spatial Analyses in Macroecology (SAM 38 ) 
programme using the Akaike information criterion 39  to select environmental 
variables and a generalized least squares spatial partial regression to add the spatial 
component. Maps were generated in  ArcGIS 9.3  ( ESRI ) using cokriging of the 
relative abundance for each clade on 85 sequenced samples, in combination with the 
three most signifi cant environmental variables in each habitat distribution model 
for all 160 samples 25 . Cokriging was chosen to generate the maps of the distribution 
of the clades because it creates a continuous map surface using a linear least squares 
model similar to our SAM models and has an estimation error that is dependent on 
the spatial autocorrelation distance for the variable of interest (relative abundance). 
Th us, the error is relatively low for estimations at distances less that the clade ’ s auto-
correlation distance from sample locations 25 .   

  Global-scale sampling and analysis   .   For the global biogeographical analysis, we 
collected six samples from each of four sites during the regional dry season using the 
same methods as for the main Colorado Rocky Mountains data set ( Table 2 ). Th e 
sites were GLV, Denali National Park  &  Preserve, AK, USA (DNP & P); Annapurna 
Conservation Area, Nepal; and Llullaillaco Volcano, Argentina. Samples from 
outside the United States were frozen in the fi eld, kept frozen during transportation 
from the fi eld, shipped frozen through express airmail and stored at     −    20    ° C until 
processed. For each sample, DNA was extracted and Sanger clone libraries for the 
16S gene were constructed according to the methods of Freeman  et al.  29 , resulting 
in 3,429 sequences. A restricted set of biogeochemical properties was measured 
for each site using the same methods as for the primary Colorado data set (soil 
water content, soil water holding capacity, all eight extracellular enzymes, forb 
abundance, soil pH, microbial biomass C & N, total dissolved nitrogen and 
dissolved organic carbon). 

 Aft er the initial (Niwot) models were used to predict the relative abundance, 
we looked for additional predictor variables that showed a broader range of 
variation and had signifi cant correlation with the residuals (predicted relative 
abundance — actual relative abundance) on the global scale. Clades with signifi -
cant correlation between residuals and environmental variables (Acidobacteria 
G4 and Saprospirales) were error corrected using ordinary least squares regres-
sion to predict residual error. Th e reason that these variables were not adequately 
weighted in the original model is because the DNP & P and Annapurna soils are 
formed from calcareous shale bedrock, whereas the GLV (and Llullaillaco) site 
is formed from igneous bedrock. Th e shales of the DNP & P and Annapurna sites 
create soils with a signifi cantly more basic pH (7.5 versus 4.5,  t -test,  P     <    0.001). 
Th is diff erence in soil pH is known to have a signifi cant eff ect on extracellu-
lar enzyme activity, particularly for leucine peptidase, which, similar to most 
peptidases, has its activity optimum in basic pH solutions 40  (11 versus 0.01, 
 t -test,  P     <    0.001). In addition, DNP & P and Annapurna soils had lower water 
holding capacities than found in the main GLV data set (0.27 versus 0.46,  t -test, 
 P     =    0.016). As a result, the habitat models for Acidobacteria G4 and Saprospirales 
are error corrected by adding leucine amino-peptidase activity, which was only 
appreciably active at pH    >    7, as a model parameter, and reweighting the contribu-
tion of water holding capacity and soil pH. In essence, we had to broaden the 
range of predictability of the models once we had data across a wider range of 
pH values. 
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 Relative abundances were rescaled for  Figure 4  because of a bias in Sanger versus 
pyrosequencing that we observed in the six samples from Colorado that were 
analysed using both sequencing approaches (Sanger relative abundance  *  factor: 
Acidobacteria G4,  * 0.667; Rhizobilaes,  * 2.85; Rhodospirillales,  * 6.54; Saprospirales, 
 * 0.204; raw relative abundances are given in  Supplementary Table S2 ). Similar 
eff ects have been observed in previous comparisons of Sanger versus pryo-
sequencing, although the cause of this bias is still the subject of debate 14,41 . However, 
the fact that these rough rescalings enabled the accurate prediction of Sanger rela-
tive abundances based on models of pryosquencing data suggests that these biases 
are consistent across samples and, given absolute abundance estimates derived 
from a method such as fl uorescence  in situ  hybridization, similar types of correc-
tion factors could be used in future to estimate actual abundances of microbial 
clades in soil samples. 

 For additional details on DNA extraction, sequence processing and phylogenetic 
determination, see  Supplementary Methods .                    
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